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I. INTRODUCTION 

Aerodynamically stable operation of the compression system 

is vital in an aircraft turbine engine. A compressor delivers a 

desired quantity of airflow at a desired pressure level during 

the stable mode of operation. The aerodynamic stability limit 

line or surge line is the critical line on a compressor map which 

is a plot of the total pressure ratio across the compressor versus 

corrected airflow rate. Only below the surge line is the com­

pressor stable. Compressor surge adversely affects engine per­

formance by reducing engine airflow and thrust. The surge line 

is usually determined experimentally, based on steady-state and 

some limited unsteady data and various empirical correlations 

and corrections. The surge line, however, is affected by the 

fluctuations and distortions of the inlet flow and other transient 

phenomena during the operation of the system. Since it is not 

feasible to experimentally evaluate a compressor or an engine 

under all possible conditions, mathematical models are built to 

simulate the operation of compression systems. 

Kimzey(l)developed a one-dimensional time-dependent model 

for the analysis of the effects of planar disturbances on a 

compressor system on the basis of conservation laws of mass, 

momentum and energy. Experimental data are used to synthesize 

the stage characteristics of the compressor. The compressor stage 

force and shaft work which are needed in the model are calculated 

based on these characteristics. Other factors such as the force 

of compressor casing acting on the fluid, heat added to the fluid 

and compressor bleed flow rate are also included in the model 

equations. The conservation equations are discretized spatially 

by the use of a two~sided difference scheme. Boundary conditions 

are imposed on total pressure and total temperature at the inlet 

boundary and on static pressure or airflow rate at the exit bound­

ary. The resulting system of ordinary differential equations are 

ir1tegrated forward in time by a fourth-order Runge-Kutta scheme. 

7 
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These models have been applied to a variety of compression 
systems by Kimzey(l) and Chamblee, Davis and Kimzey(2). They 

are used to analyze and extrapolate the experimental data and to 

study the effects of unsteady disturbances on the aerodynamic 

stability of the compression system. These models are not always 

numerically stable. Some of the techniques used for overcoming 

the numerical instabilities are to increase the friction coeffi­

cient in the inlet and exit ducting, altering the ducting lengths 

or areas and time averaging the numerical solutions once every 

few time steps. However, these techniques can achieve only 
conditional numerical stability for some of the compression 

systems. Also the application of the models has been restricted 

to limited regions of the operating map. For certain regions of 

the operating map the models are numerically unstable. 
Davis (3) has applied the MacCormack's explicit finite 

difference scheme to solve the partial differential equations of 

the model and an approximate version of the method of character­

istics to impose the boundary conditions. This scheme is more 

stable numerically than the earlier method, but this also exhibits 

numerical oscillations in the solutions under certain conditions. 

These oscillations are controlled or reduced by the addition of 

extra friction or dissipation in the inlet duct. However, the 

additional extra friction may degrade the accuracy of the simu­

lation of the actual physical system. 

In this report we present a study of the numerical stability 

of the compressor model and develop different schemes of enhanced 

numerical stability. The following items are discussed. 

a. mathematical study of the compressor model equations 

and the boundary conditions (application of the 

method of characteristics for imposing the boundary 

donditions accurately) 

b. numerical schemes and their stability characteristics: 

1. Runge-Kutta Scheme 

2. JRS (Jameson, Rizzi, Schmidt) Scheme 

3. MacCormack Scheme 

8 
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c. stable test calculations using the AEDC data 

The alternate methods of solution for the compressor model 

equations developed in this report have been shown to be 

numerically stable and are compared against each other and with 

some limited experimental data. 

9 
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H. COMPRESSOR MODEL AND THE BOUNDARY CONDITIONS 

The compression system modeled and the control volume 
system are shown in Fig. 1. The governing equations 

derived (1,2) by the application of the mass, momentum and 

energy conservation laws to the elemental control volume in 
Fig. 1-d in which blade forces, wall shear forces, shaft 

work done, heat added to the fluid and mass bleed flow rate are 

included. The resulting system of first order partial differen­

tial equations can be written as follows: 

where 

The various 

p 

A 

U 

e 

p 

C :=: 

p 
T

t 

pA 

-+- -+--+-u(z,t) :=: pAU feu) 

U2 
pA (e + "2) J 

_p 'dA -F 
'dz 

-w s - Q J 
symbols represent the following: 

de.nsi ty 

area 

axial velocity 

internal energy 

static pressure 

specific heat at constant pressure 

stagnation temperature 
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compressor bleed flow rate 

force of compressor blading and casing friction 

acting on the fluid 

Ws stage shaft work added to fluid in control volume 

Q rate of heat addition to control volume 

In conjunction with the partial differential equations (1), 

we have the equation of state given by 

P = p R T (3) 

where T is the static temperature and R the gas constant. In 

addition we have the equations relating the internal energy and 

stagnation temperature to other variables as follows: 

e = C T /y p (4) 

(5) 

The area distribution A (z) is known for a given compressor 

system. In the vector g, which acts like a forcing function in 

the differential equation, various terms are modeled empirically 

for a particular compressor except perhaps the pressure term 

which may be computed as a part of the solution. F(z,t) represents 

the forces of the blades and the casing friction acting on the 

fluid. In practice it is difficult to isolate F(z,t) empirically 

from the ex~erimental data and hence the total term (F + P 8A/8z) 

which represents the forces including the wall pressure area 

force is modeled from the experimental data. W (z,t) is the s 
shaft work done on the fluid, which depends on the stage character-

istics of the compressor. The stage characteristics are modeled 

empirically based on experimental measurements of stage total 

temperature, flow rate, total pressure and flow angularity at the 

stage entry and exit, and are corrected to account for unsteady 

flows through cascades based on the work of Goethert and Reddy(4) . 

11 
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Q(Z,t) is the heat addition to the fluid and WB(z,t) is the 

bleed flow distribution function which models the mass removal 

or addition between stages. 

where 

it is 

The equations (1) can be written in the quasi-linear form 

-+ -+ 
au + M(u-+) au + -+ (-+ ) = 0 at az g u,z,t (6) 

M(~) = at is called the Jacobian Matrix of the system. As 
ali 

shown in tue Appendix A, the Jacobian matrix M has three 

real and distinct eigenvalues V, V+c, V-c, where c is the speed 

of sound. Hence the system of partial differential equations 

(1) is hyperbolic. According to the theory of hyperbolic partial 

differential equations(S), the number of boundary conditions to 

be imposed on the left boundary should equal the number of positive 

eigenvalues of M, which in the present case is two for subsonic 

incoming flows. In other words there are two incoming character­

istics at the inlet for subsonic flows and correspondingly we 

need to impose two boundary conditions there. Similarly on the 

right boundary, the number of boundary conditions to be imposed 

should equal the number of negative eigenvalues of M there. For 

subsonic outflows, as is the case in the present model, we have 

one negative eigenvalue, V-c, which corresponds to one incoming 

characteristic at the outflow boundary and we impose one right 

boundary condition. In the present model, we prescribe the total 

pressure Pt (t) and the total temperature Tt (t) at the left 

boundary and the static pressure P (t) or the mass flow rate W (t) 

at the right boundary. 

Since it is a hyperbolic system, the best way to formulate 

three other conditions at the boundaries, which may be necessary 

in numerical computations is by the method of characteristics. 

The following three compatibility equations along the three 

characteristic directions are derived in Appendix A. These 

equations are equivalent to the original system of partial 

differential equations. 

12 
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2 dp dP + 2 0 along dz U (7) c dE - dt c gl g3 = dE = 

- dU + dP + -
g2 + g3 0 along dz U+c (8) pc dt pc = dE = dt 

- dU + dP -
g2 + g3 = 0 along dz = U-c (9) -pc dt dt - pc dE 

where the quantities gl' g2' g3 are defined in the Appendix A. 

The first two characteristic curves, corresponding to the 

eigenvalues U and U+c are the so-called right-running character­

istics and the third one corresponding to U-c is the left-running 

characteristic. We have two boundary conditions and one compati­

bility equation (9) at the inflow boundary and one boundary condi­

tion and two compatibility equations (7) and (8) at the outflow 

boundary. These equations are sufficient to solve for all the 

flow variables at the boundaries necessary for the interior point 

numerical schemes considered in this report. An accurate itera­

tive method is used to solve these equations on the boundaries. 

Details are given in the Appendix B. 

13 
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III .. NUMERICAL SCHEMES 

Three different numerical schemes, nrumely the Runge-Kutta 

Scheme, the JRS (Jameson, Rizzi and Schmidt) Scheme and the 

MacCormack Scheme have been used to integrate the partial 

differential equations forward in time. All of the schemes are 

explicit. In the JRS and the Runge-Kutta Schemes, the spatial 

derivatives are approximated by second-order accurate two-sided 

differences, while in the MacCormack Scheme forward and back­

ward differences are used in two steps which also yield second 

order accuracy. 
A. RUNGE-KUTTA SCHEME 

The partial differential equations (1) can be rewritten as 

ali af + 
( at) i = -( a z + g) i ( 10) 

where i is the interior point index. The spatial derivatives 

on the right are approximated by second-order accurate two-sided 

differences. The resulting set of ordinary differential equations 

are of the form: 

i = 2, ... 1-1 (11) 

where the index i = 1 corresponds to the left boundary and the 

index i = I to the right boundary. 

The equations (11) are integrated forward in time by a 

fourth order accurate (in time) Runge-Kutta Scheme: 

where 

+n+l 
u 

It 1 

k 2 

+n 
u + 1 

"6 

L'lt F (lin,tn ) 

L'lt F (tin + kl /2, tn + L'lt/2) 

14 
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k 
-)-

= f1t F 4 

The local linearized stability analysis (von-Neumann 

Stability) for the difference scheme (11) and (12) is carried 

out as follows. Since the non-homogeneous terms g in the 

equations (1) or (6) are computed at each time step using some 

empirical models based on experimental data, we need only 

consider the homogeneous part 

(13) 

-)- -)-

where M = af/au is the Jacobian matrix, for the purpose of 

numerical stability analysis. Even though we use non-uniform 

spatial steps in the numerical computations, we consider the 

central difference scheme with uniform mesh steps in the z-direc­

tion and constant (locally frozen) matrix M for the purpose of 

analysis. We can approximate (13) by 
-)­

dUo 
l 

at (14) 

We analyze how a Fourier wave component of the form Ak(t)e1kx , 

where I = ~ and k is the wave number, is propagated in time 

by the difference equations. For a stable numerical scheme the 

magnitudes of the wave amplitudes should remain bounded for all 

frequencies of interest. Otherwise the numerical scheme is 

considered unstable. The time growth of a Fourier component of the 

solution with wave number k is obtained by seeking the solution 
of the equation (14) in the form 

-)­

U. 
l 

Ikif1x e where I = y.r 
Substituting ~i in the equation (14) we obtain 

I M Sin(kf1x) A 
f1x k 

15 

(15) 
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where 0 ~ k 6X f 'IT. The limitation k 6x ~ 'IT is imposed by the 

fact that k = 'IT/6X is the highest wave numbe~ that can be resolved 

by a finite difference scheme with mesh width 6x. The time growth 
-+ 

of the amplitudes Ak is thus governed by a linear system of 

ordinary differential equations (16). The coefficient matrix, 

B = I MSin(k6x)/6X of this system has three eigenvalues equal to 

I A Sin(k6x)/6X, where A represents the three eigenvalues of M, 

namely, U, U-c and U+c. Since the eigenvalues of the coefficient 

matrix lie on the imaginary axis of the complex plane, the system 

of ordinary differential equations (16) is neutrally stable. 

When a Runge-Kutta Scheme is used to integrate the system 

of ordinary differential equations (16), we can obtain the stabil­

ity condition from the theory of numerical integration of ordinary 

differential equations. (6) The eigenvalues, V of the matrix 6t B 

(6t times the coefficient matrix) must lie within a zone of 

stability in the complex plane corresponding to the particular 

Runge-Kutta Scheme. The eigenvalues V are given by 

V = I A ~~ Sin(k6x) o ~ k6X ~ 'IT (17) 

where A are the eigenvalues of M, namely, U, U-c, U+c. The 

stability zone in the complex plane corresponding to the fourth 

order Runge-Kutta Scheme is shown in Figure 2. The upper most 

point on the imaginary axis within the region of stability is 

approximately 2.7. Since all the three values of V lie on the 

imaginary axis, the condition for stability is 

MaxlA ~~ Sin k6Xl ~ 2.7 o ~ k6X ~ 'IT 

This gives the necessary condition for stability in terms of the 

Courant number, CN as 

6t 
CN = Max (U+c ) 6x ~ 2. 7 (18) 

Even if the time step 6t is chosen to satisfy the equation (18), 

stability is still marginal because the non-uniformness of the 

16 
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mesh and the non-linearities in the convection terms can make ~ 

to lie in the unstable region to the right of the imaginary axis 

of the complex plane. In fact, non-linear instabilities do occur 

with the Runge-Kutta scheme in practice. In the actual numerical 

calculations it has been found necessary to time average the 

solution once every 5 or 10 time steps to suppress the non-linear 

instabilities even after obeying the Courant number restriction. 

Those details are discussed in the section dealing with the 

results. 

B. JRS (JAMESON, RIZZI AND SCHMIDT) SCHEME 

This scheme proposed by Jameson, Rizzi and Schmidt(7) is 

also based on two-sided spatial difference approximations of 

second order accuracy similar to the Runge-Kutta Scheme. It is 

a three-step method with one predictor and two corrector steps. 

Let D denote a second order accurate two-sided difference 

approximation for a/az. The JRS Scheme can be written as follows: 

P: -+n+l -+n fn -+n u. u. l1t (D . + g.) 
l l l l 

Cl: -+n+1 -+n 1 l1t (Dfr; + 
-+n 

+ Dfr;+ 1 + gr;+ 1) u. u. - - g. 
l l 2 l l l l 

-
C2: -+n+l -+n 1 l1t (Dfr; + gr; + Dfr;+l + gr;+l) u i u. 

l 2 l l l l 

The local stability analysis(7) (von-Neumann stability 

analysis) of this scheme can be carried out by analyzing the 

growth of the amplitudes of the basic Fourier modes of the 

numerical solution from one time step to the next. Since the 

(19) 

discretization in space and time are combined together in equation 

(19), we seek solutions of the form 

, where I = F (20) 

17 
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For the purpose of linear stability analysis, the non-linear term 

Df~ is replaced by M D~~ where M is the Jacobian matrix (frozen 

locally) and D is a central difference operator. Also the 

nonhomogeneous terms g are dropped as mentioned before, since 

they do not influence the stability analysis. After some algebra, 

one can obtain a relation between the amplitudes at the nth 

and (n+l) th time steps in the form 

A~+l = G ~ (21) 

where G is known as the amplification matrix. It can be shown 

that 

- 1 -2 1-3 
G = (I - B + 2 B -"4 B ) (22) 

where I is the identity matrix and B = I 6t M Sin(k6x) /6X. Linear 

stability is assured if MaxJeigenvalues of GJ~ 1 

1 2 1 3 
Eigenvalues of G = 1 - ~ + -2 ~ -"4 ~ (23) 

where ~ is given by the equation (17). 

JEigenvalues of GJ2 1 1 4 (1 1 2) = - "4\) - 4"\) 

~l , if J \) J $2 (24) 

where \) = Ie 6t Sin(k6x)/6x and X = V, V-c or V+c. Thus the 

condition for linear stability is obtained as 

6t 
eN = Max (V+C) 6X $ 2 (25) 

The time accuracy of the scheme is of second order, which is less 

than that of the Runge-Kutta Scheme. However it requires less 

computing per time step while the time step can be taken nearly 

as large as that of the Runge-Kutta Scheme. However, this is also 

a non-dissipative scheme just like the Runge-Kutta Scheme and non­

linear instabilities occur under certain conditions. For certain 

test runs it has been found necessary to time average the solutions 

once every 5 or 10 time steps. 

18 
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C.M~CORMACKSCHEME 

One of the most popular schemes for solving the time depen­

dent Euler equations or Navier-Stokes equations is the MacCormack 

Scheme(8) due to its many desirable features. It is a two-step, 

predictor-corrector method. In the predictor, the spatial 

derivatives are approximated by a backward difference scheme and 

in the corrector by a forward difference scheme. Although either 

the predictor or the corrector is only first order accurate in 

time and space, the total scheme, however, is second order 

accurate both in time and space. The scheme can be written as 

P: 
-+i1tl -+n 6t (fr: f~_l) 

-+n 
u. u. - 6z. - - 6t g. 

l l l l 
l (26) 

I \ 
C: 

-+n+l 1 ~-+n + -+n+l 6t (f~!i - f~+l) 6t -+n+l) u. u. u. - g. 
l 2 l l 6zi + l l 

where 6Z
l
· = Z.-z. l' Using an analysis similar to that outlined 

l l-
for the JRS scheme one can show that the necessary condition for 

local (linearized) stability of this scheme is that the Courant 

number, CN obey 

CN = max (U+c) 6t < 1 
6Z (27) 

MacCormack scheme is dissipative in the sense that the high 

frequency components of the errors are dissipated rapidly. Thus 

it is less susceptible to non-linear instabilities than the Runge­

Kutta or JRS schemes. As a matter of fact whenever the Courant 

number is less than 1, the numerical calculations have always 

been stable without any time averaging. While the time step 

that can be chosen for this scheme is less than those of the 

Runge-Kutta and JRS schemes, the computation per step is less. 

With the three difference schemes discussed above, the 

boundary conditions are imposed using the method of characteris­

tics as discussed in the last section and the Appendix B. Test 

calculations have been performed using all the schemes and the 
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results are discussed in the next section. Simple extra­

polation techniques at the boundaries have been found to be 

either unstable or otherwise unsatisfactory. 

20 



AEDC- TR-82-1 6 

IV. TEST CALCULATIONS 

The model described in the last two sections has been 

applied to a typical high-pressure compression system. A 
Schematic of this system is presented in Fig. l-c which 

includes 4 inlet ducting control volumes, 10 compressor stage 

control volumes and 5 combustor control volumes. For the inlet 

ducting and combustor 

calculated by T = cf w 

control volumes the friction force is 

pv2 /2 where cf is the assumed skin fric-

tion factor. The compressor blade force and the shaft work in 

each compressor stage are calculated from the corresponding 

stage characteristics(1-2). Compressor bleed flow rate and heat 

addition to the fluid are not considered in the test cases run. 

In the boundary conditions, the total pressure and the total 

temperature at the inlet are fixed, but the s·tatic pressure at 

the exit is specified as a function of time. The exit pressure 

is increased with time as a linear function (pressure ramp) at 

50 psia/sec in one case and 20 psia/sec in another case. Com­

putations have shown that the compressor surge occurs at about 

the same exit pressure level, as shown in Fig. 3, Henc~ most 

of the computations have been done with 50 psia/sec exit pressure 

ramp. 

For each run, the initial values of the dependent variables 

namely the density, the mass flow rate and the total energy are 

input at all the spatial locations of the grid. They can be 

obtained from another steady state code or can be empirically 

guessed. Force calculation data such as the stage characteristics 

are also input for a constant corrected speed. Time dependent 

calculations are done for a fraction of a second (0.1 sec in the 

present case) with fixed boundary conditions at both ends in 

order to reach a steady-state starting solution. At this point 

the exit static pressure is increased at a rate of 50 psia/sec. 

Test runs have been made with two different corrected speeds; 

one at 87 percent of design corrected speed and the other at 102 

percent corrected speed. 

21 



AEDC-TR-8 2-16 

A test case with 87 percent corrected speed has been run 

with 6t = 0.00005 which corresponds to the Courant number, 

eN ~ 0.6 using all three difference schemes. The Runge-Kutta 

scheme requires time-averaging of the solution once every 5 time 

steps in order to suppress the non-linear numerical instabilities. 

The numerical solution obtained by the JRS scheme exhibits some 

numerical oscillations but they are not severe enough to cause 

non-linear instability. However these numerical oscillations 

are removed by time-averaging the solution once every 5 time steps 

in the JRS scheme. The MacCormack Scheme produces stable solution 

without any numerical oscillations till the point of surge and 

does not require any time-averaging. The pressure ratio across 

the compressor is plotted against the percent corrected compressor 

inlet airflow in Figs. 4, 5, and 6 corresponding to the Runge­

Kutta, JRS and MacCormack Schemes respectively. All these schemes 

produce the same performance map except near the surge point. The 

Runge-Kutta and JRS Schemes predict the surge point within 2 per­

cent of the pressure ratio of the experimental surge point. The 

MacCormack scheme does it even better and predicts the surge point 

within 1 percent. Figures 7, 8 and 9 show the pressure ratio 

across the compressor and the percent corrected airflow against 

time till the point of surge,obtained by the three methods and 

they compare very well against each other. 

In addition to the overall performance plots, we have also 

plotted some computed results of the individual stages. Figures 

10, 11 and 12 show individual stage entrance static pressures 

against time and Figs. 13, 14 and 15 show the stage entrance 

airflow rate against time calculated by the three methods, just 

before the flow breaks down. At the time of compressor surge, 

the stage that initiates the surge will indicate a sudden increase 

in stage entrance pressure and a sudden decrease in exit pressure 

(which is the entrance pressure of the next stage). This signa­

ture is caused by flow ~tagnation at the entrance and recirculation 

at the stage exit, perhaps caused by flow separation on the blades. 
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By examlnlng the individual stage pressure performance in the 

Figs. 10, 11 and 12, it may be inferred that the 2nd and 7th 

stages initiate the surge process. Experimental data, however, 

indicates that the surge is initiated at the 7th stage. It 

seems that the stage characteristic data for the 2nd stage, used 

in this test run, is not very accurate. 

The model predictions of the compressor performance for the 

case of 102 percent corrected speed are given in Figs. 16 to 27. 

The experimental surge point for this case is at 100.4 percent 

corrected compressor inlet airflow when the pressure ratio across 

the compressor equals to 10. All three methods predict the surge 

point within 0.5 percent of the experimental values. Figures 22 

to 24 indicate that the surge process is initiated at the 7th 

stage in this case. In general the model predictions in this 

case by the three methods agree with each other well and are 

better than the previous case. Experimental data agrees with the 

prediction of the 7th stage initiating the surge in this case. 

We have made computations with larger time step (6t = 0.0001) 

which corresponds to a Courant number CN ~ 1.2 to see if the runs 

can be speeded up. The Runge-Kutta and JRS Schemes with time­

averaging yield same results as before for both 87 percent and 

102 percent cases, but require only half the computing time. The 

MacCormack Scheme which is stable only for CN ~ 1, works even with 

CN = 1.2 for the 87 percent case and gives the same results as be for 

in half the computing time. The MacCormack Scheme with CN = 1.2 

becomes unstable for the 102 percent case, but can be stabilized 

however, by time-averaging the solution once every 2 time steps 

in which case it yields the same results as before again in half 

the computing time. In general it may be better to use the 

MacCormack method with CN = 1.0 and no time-averaging. 

In conclusion the Runge-Kutta and JRS Schemes with time­

averaging and the MacCormack Scheme without any time-averaging 

and the boundary conditions imposed with the use of characteris­

tics in all the schemes yield numerically stable solutions of the 
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compressor model. Among the three schemes the MacCormack Scheme 

is preferred for its stability characteristics and efficiency in 

computation. 
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V. CONCLUSIONS 

A. The one-dimensional compressor model equations are hyper­

bolic and the imposition of proper boundary conditions 

is critical for solving them. For obtaining the numerical 

solutions of these equations, imposition of the boundary 

conditions based on the method of characteristics has been 

found to be the most accurate and stable technique. 

B. Three different finite difference schemes have been analyzed. 

The Runge-Kutta Scheme and the JRS (Jameson, Rizzi and 

Schmidt) Scheme exhibit non-linear instabilities even when 

the Courant number restriction is obeyed. However, both 

the schemes can be stabilized by time-averaging the solu­

tions every 5 time steps. MacCormack Scheme has been 

found to yield numerically stable solutions without any 

time-averaging. 

C. All of the three difference schemes together with the 

boundary conditions based on the method of characteristics 

predict compressor surge reasonably accurately and agree 

with experimental data reasonably well for the test cases 

run. Overall, MacCormack Scheme has been found to be more 

accurate and reliable than the other two schemes. 
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APPENDIX A 

DERIVATION OF THE CHARACTERISTICS 
AND COMPATIBILITY EQUATIONS 

AEDC-TR-82-16 

The one-dimensional time-dependent compressor model equations 

in the conservation form, as given in equation (1) are 

where p = 
P = PA, h 

a~(z,t) af (~) (+ ) 0 (A-l) at + az + g u,z,t = 

+ u = 

pA l r p 

pAU = m 

L pA(e 
u2 

+y 

pAU P U 

A(pU2 + P) 

2 
pAU (e + -¥ + ~) 

= - 2 -pU + P 

2 
pU(h + ¥ ) 

+ + 
g(u,z,t) = g2 

U
2 

pA, m = pAU, E = pA(e + ;r) are conservation variables and 

e +~. With the equation of state for perfect gas and 
p + 

calorically perfect gas assumption, the flux vectors f can be 

re1;vritten in terms ,<Df the conservation variables: 
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-+ +' 
feu) = 

m 

2 m 
-p 

m 

+ (y-l) 

[ 

E I-v 2 
y p + 2 ~2 ] 

Hence the Jacobian matrix 

M = af 
-+ 

au 
:= 

o 

DE 3 -y pA - (l-y)U 

1 

(3 -y) U 

E 3 2 
Y pA +"2 (l-y)U 

o 

)'-1 

yU 

The complexity of this Jacobian matrix makes it rather tedious to 

compute the eigenvalues. It is easier to work with the nonconserva­

tive or primitive variables u = [p u pJ T. We can rewrite the 

equation (A-I) as 

L au + N 
au + at az 

where 

1 0 0 

L = a~ = U p 0 
au ..., 

u"" pU yhJ "2 

-+ 
0 g = 

-+ 

and N = af - = ~ 

au 

-U p 

U2 2pU 

') 

uJ 

is (/-t~ + i U2 ) 2' 
p 

(A-2) 

o 

1 

y uJ 
y-l 

-1 MUltiplying the equation (A-2) by the inverse matrix L ,we convert 

it into a nonconservative form 

(A-3) 
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where 

U - ol p 

M = L- l N 0 U 1 = -p 

0 -YP U 

gl 

~ -1 -7- U 1 
g = L g = - -:-- gl + '":"" g2 

p p 

(YZ1) U2 + . gl (l-y) Ug2 + (y-l)g3 

= 

- 2 4 r:7fSiT and yP = pc where c =VyRT is the speed of sound. The non-

conservative form matrix M is related to the Jacobian matrix M 

by the similarity transformation 

~ 

Therefore M and M have the same eigenvalues. 

It is easy to derive the eigenvalues of M, which are U, 

U+c, U-c. The corresponding eigenvectors, written as column 

vectors, form the matrix 

1 

2c2 
1 

2pc 
1 
2" 
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such that T-lM T A 

where 
2 0 -1 U 0 0 c 

-1 0 - 1 and A 0 U+c 0 T = pc = 

-0 -pc 1 0 0 U-c 

MUltiplying the equation (A-3) by T- l and using the similarity 

relation mentioned above, the following equation is obtained 

T- l au + AT- l au + T-l g~ 
at az = 0 (A-4) 

This equation can be written in the scalar form as 

z a U a - a a is + Z 0 (A-S -1) c (at + az) p (at + U az) c gl g3 = 

- a (U+c) 1..) U + (1.. (U+c) a is + -
gz 0 pC(ot + + oz) pc + g3 = az/ 'at 

(A-S-2) 

-pc(;t + (U-c) ;z) U + (;t + (U-c) ;z) is - pc g2 + g3 = 0 

(A-S -3) 

These are called the compatibil,ity equations in the characteristic 

directions. The characteristic directions 81 , 82 , 83 are 
defined by 

a a + U a then dz = U along 81 08 1 
= at az dt , (A-6-l) 

0 0 + (U+c) 0 then dz U+c along 82 a8 2 at oz' dt = (A-6-2) 

a a + (U-c) a then dz U-c along 83 a83 
= dt dZ' dt (A-6-3) 
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which are called the characteristic equations. Thus, in terms 

of the characteristic coordinates, the compatibility equations 
become 

2 ap ap + 2 
gl o along Sl c aS l 

- aS l 
c g3 = (A-7 -1) 

- au + ap + -
g2 + o along S2 pc aS2 aS2 

pc g3 = (A-7-2) 

au + ap - + - o along S3 -pc aS3 aS3 
- pc g2 g3 = (A-7-3) 

It may be noted that along each of these characteristic curves, 
the compatibility equations are ordinary differential equations 

and the parameters Sl' S2' S3 can be considered as time t 
itself. Thus we can rewrite the compatibility equations along 
the characteristics as follows: 

2 dp dP 2 
c dt - dt + c gl 

dz g3 = 0 along at = U (A-8-l) 

- dU + dP + -pc dt dE pc g2 + g3 = dz o along dE = U+C (A-8 -2) 

- dU dP -
-pc dE + dt - pc g2 + g3 = dz o along at = U-c (A-8 -3) 
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1. Inlet Boundary 

APPENDIX B 

BOUNDARY CONDITIONS BASED ON THE 
METHOD OF CHARACTERISTICS 

As mentioned in the main text, it is necessary and sufficient 

to impose two boundary conditions at the inlet boundary for sub­

sonic inflows. In the present case the total pressure P t and the 

total temperature Tt are prescribed at the inlet. For determining 

all the variables at the boundary point, however, we need another 

equation which is supplied by the compatibility equation along 

the characteristic direction S3' 

1 P 2 

~:I~ 

In general, the location of P and the variables at Q will 

have to be solved iteratively. As an initial iteration, we 

approximate the characteristic S3 by a straight line with the 

slope evaluated at P. (U-c) at P is approximated by interpola­

tion of its values at points 1 and 2. Location of P is thus 

obtained by solving the following t~ree linear equations: 
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(B-l-l) 

(B-1-2) 

(B-1-3) 

Then all the necessary thermodynamic va.riables at P can be 

determined by linear interpolation between points 1 and 2. 

The compatibility equation (A-8-3) is integrated from the point 

P to the point Q using a forward difference approximation, which 

can be written as 

F(UQ) = - pc (UQ - Up) + (PQ - Pp) - pc 6t g2+6t g3/A = 0 

(B-2) 

where UQ and PQ are unknowns and p and c are calculated at P in 

the initial iteration. Since the total pressure, Pt and the 

total temperature, Tt are prescribed at the point Q we can express 

PQ in terms UQ by the equation 

.:L 
y-l 

(B-3) 

Using this equation, we can eliminate PQ from the difference 

equation (B-2) and obtain the following nonlinear equation for UQ. 

(B-4) 

Differentiating F, we can write 

F'(U) = - pc - ~p [1 Q y=I t -2C:tr~1 [C:~t] (B-5) 
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The equation (B-4) is solved by the Newton-Raphson iteration: 

U(\>+ 1) 
Q (B-6) 

with the initial guess u~o) = Ul . This is the inner iteration 

within the outer iteration started earlier. The converged value 

for UQ is the first iterate for U at Q. Further iterations are 

carried out to satisfy the compatibility equation to sufficient 

accuracy. This can be done by modifying the equation (B-1-2) 

as 

(B-7) 

where the latest values at P and Q are used in each iteration. 

Location of P is updated in each iteration and in the equations 

(B-4) and CB-5) p and c are calculated by the average of their 

values at P and Q: 

p (B-8) 

This iterative process is continued till the values of UQ 
converge. This convergence is usually obtained within 2 or 3 

iterations at each time step. Once UQ is known, all the other 

variables at Q can be computed. 

2. Exit Boundary 

For subsonic outflow, only one boundary condition can and 

should be imposed at the exit boundary. The static pressure P 

is prescribed at the exit in the present case. The other vari­

ables at the exit boundary point are determined by using the 

compatibility equations along the characteristic directions 81 
and 8 2 , 
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a. Integration along the characteric direction Sl: 

1-1 

~ 

l' 0 

/1 
dz=u/ 6 t 

dt / 1 
/ Sl 

I )( 

In a manner similar to the procedure used at the inlet 

boundary, the following three linear equations 

61 + 6 - 6 2 - (B-9-l) 

(B -9 -2) 

(B-9-3) 

are solved to determine the location of S and the thermodynamic 

properties of the flow at the point S are determined by a linear 

interpolation between the points I and (1-1). The compatibility 

equation (A-8-l) is integrated by a forward difference approxi­

mation and the density at the boundary point 0 is calculated by 

(B-10) 

where Po is known from the imposed boundary condition and all 
the coefficients are calculated at the point S. 
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b. Integration along the characteristic direction 8
3

: 

The same procedures as in case (a) is followed except that U in 

the equations (B-9-2) and (B-9-3) is replaced by U+c. The com­

patibility equation (A-8-2) is integrated to obtain U at the 

point 0 as 

(B-ll) 

The entire process of (a) and (b) can now be repeated by replacing 

U in the equation (B-9-2) and c in the equation (B-10) and pc in 

the equation (B-ll) by their respective averages at the points 

o and 8 or 0 and R. Convergence is usually achieved in 2 or 3 

iterations. All the variables necessary at the exit boundary 

point 0 can now be determined. 
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Figure 2. Stability region in the complex plane for fourth order Runge-Kutta Scheme. 
lit is given by Equation (17)] 
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Figure 7. Variation of the compressor fllow parameters with time till surge point - 87 percent 
corrected speed (Runge-Kutta Scheme). 
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Figure 9. Variation of the compressor flow parametell's with time tm surge point - 87 percent 
corrected speed (MacColl'mack Scheme). 
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Fi:gme 19. Variation of the compressor flow parameters with time till surge point - 102 
percent corrected speed (Runge-Kutta Scheme). 
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pelrcent corrected speed (JRS Sclileme). 
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Figure 21. Variation of the compressor flow parameters with time till surge point - 102 
pelrcent corrected speed (MacCormack Scheme). 

tsI 
CD 

csi 

! 

tsI 
CD 

csi 

~ 
m 
Cl 
(1 

~ 
:D 

co 
N , 

Ol 



AEDC-TR-8 2-16 

1. 21121 f Stage 10 
I.J..J .. .. .. ... ~ 0::: .. .. .... 
= C/) 
C/) 1. 19111 
I.J..J Stage 9 0::: 1.2111111 { .. CI..- .. 

\ .. .. .. 
u .. 
>-I 

f- l. 1BI1I 
<:C 
f- lo 21111 C/) Stage 8 
I.J..J 
U 
z 1. 19111 <:C 
0::: Stage 7 f- l. 19111 z 
I.J..J 

I.J..J 
<.!J 1. 170 
<:C 
f- 1. 17111 C/) r --1 
<:C 

1.15111 L >-I 

f--z 1. 12111 Stage 5 >-< 
......... 
I.J..J 
0::: = 1. 1111111 
C/) 
C/) 

1.I1IBI1I I.J..J Stage 4 
0::: 
CI..-

u 1.06111 I-t 

f-
<:C 1.05111 [ f- Stage 3 C/) 

~ .. .. 
I.J..J ,.;,. ---A .. 

,.;,. 
u 1.1113111 z 
~ 1.03111 I f- Stage 2 z 
I.J..J .. .. .. .. .. .. .. 

""""" I.J..J 1. 01111 
<.!J 
<:C 1.020 [ f-
C/) 

Stage 1 
1. 000 ... 4- 4- 4- + + -+ 

116. 9 117.4 117.9 IIB.4 I1B.9 119.4 119.9 120.4 120.9 

TII~E) UNIT = 5 MSEC 

Figure 22. Individual stage pressure variations just before surge - 102 percent corrected 
speed (Runge-Kutta Scheme). 
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speed (JRS Scheme). 
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Figure 24. Individual stage pressure variations just before surge - 102 percent corrected 
speed (MacCormack Scheme). 
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Figure 25. Individual stage airflow variations just before surge - 102 percent, corrected 
speed (Runge-Kutta Scheme), 
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Figure 26. Individual stage airflow variations just before surge - 102 percent corrected 
speed (JRS Scheme). 
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Figure 27. Individual stage airflow variations just before surge - 102 percent corrected 
speed (MacCormack Scheme). 
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